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The plasma-sprayed coating architecture and in-service properties are derived from an amalgamation of
intrinsic and extrinsic spray parameters. These parameters are interrelated; following mostly non-linear
relationships. For example, adjusting power parameters (to modify particle temperature and velocity
upon impact) also implies an adjustment of the feedstock injection parameters in order to optimize
geometric and kinematic parameters. Optimization of the operating parameters is a first step. Controlling
these is a second step and consists of defining unique combinations of parameter sets and maintaining
them as constant during the entire spray process. These unique combinations must be defined with regard
to the in-service coating properties. Several groups of operating parameters control the plasma spray
process; namely (i) extrinsic parameters that can be adjusted directly (e.g., the arc current intensity) and
(ii) intrinsic parameters, such as the particle velocity or its temperature upon impact, that are indirectly
adjusted. Artificial intelligence (AI) is a suitable approach to predict operating parameters to attain
required coating characteristics. Artificial Neural Networks (ANN) and Fuzzy Logic (FL) were imple-
mented to predict in-flight particles characteristics as a function of power process parameters. The
so-predicted operating parameters resulting from both methods were compared. The spray parameters
are also predicted as a function of achieving a specified hardness or a required porosity level. The
predicted operating parameters were compared with the predicted in-flight particle characteristics. The
specific case of the deposition of alumina-titania (Al2O3-TiO2, 13% by weight) by APS is considered.

Keywords artificial neural networks, atmospheric plasma
spray, fuzzy logic, hardness, porosity, predicting
properties, process parameters

1. Introduction

The Atmospheric Plasma Spray (APS) process is
beneficial to deposit a variety of powder materials at high
deposition rates to form thick (i.e., 150–350 lm, average
thickness) layers onto substrates of various nature, size,

and shape. In this process, powder particles are trans-
ported to the plasma jet by a carrier gas, where they are
melted and simultaneously accelerated toward a substrate.
After impact onto the substrate, the particles spread and
solidify to form lamellae, the stacking of which creates a
spray bead, and the superimposition of many such beads
establishes a continuous coating (Ref 1).

The coating quality depends on the characteristics of
the substrate (topology, chemistry, etc.) and the impinging
particle state (quantity of momentum, impact angle, vis-
cosity, degree of melting, etc.) (Ref 2). In turn, the particle
state is related to the particle injection (quantity of
momentum, etc.) and to the plasma flow characteristics
(mass enthalpy, velocity, coefficient of thermal transfer,
etc.). The coating quality control generally considers the
monitoring of the feedstock particle characteristics (i.e.,
velocity and surface temperature) before their impinge-
ment onto the substrate since these influence significantly
the coating in-service properties (Ref 2) and the micro-
structural features. Among these features, hardness and
porosity level are key parameters that describe the
anisotropy of a sprayed coating architecture and, there-
fore, their materials properties. The material properties
can as a consequence of these relationships be controlled
by adjusting the operating parameters; namely the power
parameters.
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The interactions among the spray variables, however,
render optimization and control of this process quite
complex. Understanding relationships between coating
properties and process parameters is mandatory to opti-
mize the process technique and the product quality.

Artificial intelligence based on artificial neural net-
works (ANN) and fuzzy logic (FL) offers new insights for
optimizing and prediction of materials properties of this
process. Indeed, such methods are appropriate tools to

study complex processes with parameter interdependen-
cies (Ref 3). In addition, they have proven to be applicable
to the domain of materials science (Ref 4) and to process
development; especially in the case of thermal spraying
(Ref 5-8).

This article develops a model-based estimation for the
power parameters in the APS process. Two models based
on ANN and FL were proposed to predict the influence of
power process parameters (arc current intensity, total
plasma gas flow rate, and hydrogen percentage) on the in-
flight particle characteristics. As well, some coating
properties (porosity and microhardness) were predicted as
a function of the power parameters and the corresponding
in-flight particle velocity and temperature. The specific
case of the deposition of alumina-titania (Al2O3-TiO2,
13% by weight) by APS was considered in this study.

2. Experiments

2.1 Experimental Design and Set-ups

Metco 130 (Sulzer-Metco, Wohlen, Switzerland) fused
and crushed gray alumina-titania (Al2O3-TiO2, 13% by
weight) powder of particle size distribution (determined
implementing a laser particle distribution analyzer) rang-
ing from 1.0 lm (d10) to 57.5 lm (d90) lm and of average
(d50) diameter of 35.7 lm was selected as the feedstock.

A Sulzer F4-type atmospheric plasma torch (Sulzer-
Metco, Wohlen, Switzerland) of 50 kW maximum oper-
ating power, equipped with a anode nozzle of 6-mm
internal diameter, was selected to carry out the experi-
ments. Coatings were sprayed onto 25 mm diameter and
20-mm thick button-type AISI 304L (stainless steel)
samples. Prior to spraying, substrates were manually grit-
blasted using white corundum (a-Al2O3) of average
diameter ranging from 425 to 600 lm (supplier data,
Saint-Gobain, Avignon, France). After grit-blasting, the
substrate exhibited an average roughness (Ra) of 3.6 lm,
average value, and a peak-to-valley height (Rz) of
31.0 lm, average value. Substrates were then degreased by
immersion in acetone vapors.

Several sets of power parameters were defined to
manufacture the coatings. These sets permitted evaluation
of the selected process parameters on the coating prop-
erties. In this fashion, the effect of the arc current intensity
was adjusted between 350 and 650 A by fixing, respec-
tively, the hydrogen mass percentage and the total plasma
mass gas flow rate at 1.25% (25% at volume percentage)
and 72.3 g min-1 (50 Nl min-1 at volume flow rate). The
effect of the total plasma gas flow rate was studied
between values of 50–100 g min-1 (35–70 Nl min-1 at
volume flow rate) by keeping the hydrogen mass per-
centage and the arc current intensity constant at 1.25%
and 530 A, respectively. The effect of the hydrogen mass
percentage was studied between 0.25% and 1.75% (5% to
35% at volume percentage); whereas the total plasma gas
flow rate and the arc current intensity were kept constant
at 72.3 g min-1 and 530 A, respectively. The carrier gas
flow rate was systematically adjusted using a non-intrusive

Acronyms and Definitions

AI Artificial Intelligence: study and

design of systems capable of

perceiving their environment and

taking actions maximizing their chance

of success

ANN Artificial Neural Network:

interconnected group of artificial

neurons which processes information

using a connectionist approach to

computation

Artificial neuron (related to Artificial Neural Network)

basic unit in an artificial neural

network based on an abstraction of a

biological neuron and which receives

one or more inputs (representing the

one or more dendrites) and sums them

to produce an output (synapse). The

sums of each node are weighted and

the sum is passed through a non-linear

function known as transfer function

Back-propagation (related to Artificial Neural Network)

most used technique used for training

feed-forward artificial neural networks

(networks that have no feedback or no

connections that loop)

Defuzzification (related to Fuzzy Logic) procedure

during which a real value from the

result of the inference is produced and

can be used as a fuzzy control input

FL Fuzzy Logic: derived from fuzzy set

theory dealing with reasoning that is

approximate rather than precisely

deduced from classical predicate logic

Fuzzification (related to Fuzzy Logic) procedure

during which the real input variables

(power parameters in the present

study) are translated in terms of fuzzy

sets

MF Membership Function (related to

Fuzzy Logic): associates a weighting

with each of the inputs that are

processed, defines functional overlap

between inputs, and ultimately

determines an output response. In the

present study, MF correspond to the

power parameters
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diagnostic tool (CCD camera equipped with filters and a
short, i.e., a few ms, aperture duration) for each spray
parameter set to obtain an optimal particle trajectory
within the plasma flow. The particles penetrated into
warm core of the flow with a deviation angle of about
4 degree. The experiments were performed in a random
order to ward against lurking variables, Table 1. The other
parameters were maintained at reference values, Table 2.

Concomitantly to the manufacture of thick coatings,
in-flight particle average characteristics (velocity and
temperature) were monitored for several sets of operating
parameters using a Spray-Watch system (Osier, Tampere,
Finland) (Ref 9). The diagnostic protocol considered 60
images for each operating parameter set. Values were
then adjusted and averaged, Table 1.

2.2 Coating Microstructural Analysis

After conventional metallographic preparation per-
formed on automatic systems (sample cutting and sample
polishing), coating characterization was performed on
their cross-sections by Scanning Electron Microscopy
(SEM) in the secondary electron (SE) mode, leading to a
resolution of 0.2 lm. Figure 1 displays a typical Al2O3-
13TiO2 coating structure. Stereology was then imple-
mented to calculate the porosity level for each sample

(Ref 10). Ten images, randomly captured along the cross-
section, were analyzed per sample.

Vickers hardness measurements was performed on the
polished cross-sections using a microhardness tester with a
load of 300 g f and a dwell time of 15 s. Ten measure-
ments randomly located along the cross-section were
considered for each sample, the results being then
averaged.

The experimental results are displayed in Table 1.

3. APS Process Simulation

3.1 Model Based on Fuzzy Logic

The FL concept was implemented to predict the
in-flight particle characteristics (particle average velocity

Table 1 Experimental data

Arc current
intensity

Plasma gas
mass flowrate

Hydrogen mass
percentage

In-flight particle average
temperature and

associated standard
deviation

In-flight particle
average velocity

and associated standard
deviation

Averagemicrohardness
and associated

standard deviation

Average porosity
and associated

standard deviation
I, A Ar + H2, g min21 H2/Ar, % T, �C V, m s21 VHN, VHN0.3kg f P, %

350 72.3 1.25 2318 ± 3 264 ± 8 845 ± 33 5.0 ± 1.5
450 72.3 1.25 2421 ± 4 285 ± 10 864 ± 20 4.6 ± 1.0
530 72.3 1.25 2458 ± 2 302 ± 7 883 ± 60 3.9 ± 0.7
600 72.3 1.50 2516 ± 3 307 ± 7 913 ± 53 4.2 ± 1.5
650 72.3 1.25 2515 ± 5 324 ± 6 1053 ± 53 3.7 ± 1.9
700 71.7 0.38 2396 ± 3 336 ± 6 847 ± 43 6.6 ± 1.5
530 50.0 1.25 2415 ± 4 251 ± 3 794 ± 51 4.3 ± 0.7
530 60.0 1.25 2429 ± 5 270 ± 7 856 ± 35 6.8 ± 3.5
530 80.0 1.25 2433 ± 7 313 ± 9 876 ± 38 6.9 ± 1.1
530 90.0 1.25 2433 ± 5 311 ± 8 830 ± 18 8.7 ± 2.5
530 100.0 1.25 2419 ± 7 348 ± 13 909 ± 75 9.0 ± 1.3
530 72.3 0.25 2302 ± 4 267 ± 6 626 ± 36 7.2 ± 1.1
530 72.3 0.50 2357 ± 3 299 ± 6 770 ± 23 5.5 ± 1.0
530 72.3 0.75 2389 ± 3 303 ± 9 862 ± 34 7.0 ± 1.2
530 72.3 1.00 2409 ± 5 301 ± 10 741 ± 167 4.8 ± 1.4
530 72.3 1.50 2441 ± 5 299 ± 7 949 ± 28 5.3 ± 1.8

Table 2 Reference spray operating parameters
for Metco 130 with a F4 type spray gun

Processing parameters Values

Feedstock injection distance
(distance from the injector tip
to the plasma gun centerline axis)

6 mm

Feedstock injector internal diameter 1.8 mm
Feedstock mass rate 22 g min-1

Plasma gun scanning step 12 mm pass-1

Spray distance 125 mm

Fig. 1 Typical Al2O3-13TiO2 coating cross-sectional structure
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and temperature) by varying three power-operating
parameters. The model is empirically-based and permits a
conclusion based upon imprecise input information, Fig. 2.
The FL model is generally implemented following three
successive steps, namely fuzzification, rule evaluation (or
inference), and defuzzification (Ref 11).

3.1.1 Fuzzification and Membership Functions. The
membership function (MF), corresponding in the present
case to the power parameters, associates a weighting with
each of the inputs that are processed, defines functional
overlap between inputs, and ultimately determines an
output response (Ref 12).

The fuzzification step translates real input variables
(power parameters) into terms of fuzzy sets. A control
algorithm is coded using fuzzy statements in the block
containing the knowledge base by taking into account the
objectives and the system behavior. Table 3 summarizes
the considered process MF. This was achieved by evalu-
ating all the input MF with respect to the current set of
input values to establish the degree of activation of each
MF. The true value for the premise of each rule was
computed and applied to the conclusion part of each rule.
These result in one fuzzy subset to be assigned to each
output variable for each rule. Four MFs were employed to
encode the inputs of the MF; these are:

� The symmetric Gaussian MF function that depends on
two parameters, r and c, as follows:

f x; r; cð Þ ¼ e
� x�cð Þ2

2r2 ðEq 1Þ

The parameters for this function are the parameters r
and c listed in order in the vector [r c].

� The Z membership function (Z) is so named because
of its Z shape. This spline-based function of x is
depicted by:

1; x � a

1� 2
x� a

b� a

� �2

; a � x � aþ b

2

2
b� x

b� a

� �
;
aþ b

2
� x � b

0; x � b

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ðEq 2Þ

The parameters for Z membership function a and b
locate the extremes of the sloped portion of the curve.

� The S membership function (S) is a spline-based curve
that maps the vector x. The parameters for the

Fig. 2 Fuzzy logic basis system

Table 3 Power parameters (membership function, MF)
decomposition

Level

Arc current
intensity (I)

parameter range:
200 fi 900 A

Plasma forming
gas flow rate

(Ar + H2)
parameter range:

0 fi 80 Nl min21

Hydrogen volume
percentage (H2/Ar)

parameter range:
0 fi 60%

Null [200 300] (a) [5 10] (a) [10 10] (a)
Very low [40 350] (c) [15 20] (c) [10 10] (c)
Low [40 440] (c) [15 35] (c) [10 20] (c)
Medium [40 530] (c) [15 50] (c) [10 35] (c)
High [40 630] (c) [15 65] (c) [10 50] (c)
Very high [530 750] (b) [15 80] (b) [10 60] (b)

(a) ZMF. (b) SMF. (c) Gauss MF
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S membership function, a and b, locate the extremes
of the sloped portion of the curve.

� The outputs MF, represent either the in-flight particle
characteristics (average surface temperature and
average velocity) and were selected as triangular
functions; the characteristics of which were adjusted
to describe the same tendencies as the ones of the
experimental data. The triangular MF is a function of
a vector, x, and depends on three scalar parameters a,
b, and c, as given by:

f x,a,b,cð Þ ¼ max min
x� a

b� a
;
c� x

c� b

� �
; 0

� �
ðEq 3Þ

The parameters a and c locate the feet of the triangle
and the parameter b locates the peak.

The selection of the MFs results from an optimization
by trials and errors. Concerning the inputs, it appeared
that symmetric Gaussian MFs presented the advantage to
well describe the dispersions in the considered parameter
values. S and Z MFs permitted to simply define the
intervals over which parameters could not vary (corre-
sponding to the process limits; e.g., an arc current intensity
lower than 300 A). Concerning the outputs, triangular
MFs were selected since their use permitted to obtain the
lowest possible differences between the predicted results
and the reference values (i.e., experimental ones).

3.1.2 Rule Base. The rules use the input membership
values as weighting factors to determine their influence on
the fuzzy output sets of the final output conclusion. The
truth value for the premise of each rule is computed and
applied to the conclusion part of each rule. This results in
one fuzzy subset that is assigned to each output variable
for each rule. From the experimental database, different
combinations between process parameters and in-flight
particle characteristics permit determination of the fuzzy
rules. Each rule is activated as soon as the membership
degree of its premise is not null. Mamdani�s rule (Ref 13)
was used in this study; it can be expressed as follows:

IF Ið Þis Ai
1 AND H2 þArð Þ is Ai

2 AND H2=Arð Þ
is Ai

3 THEN V is Bi AND T is Ci ðEq 4Þ
The index ‘‘i’’ denotes input/output linguistic values from
the fuzzy sets (very low, low, medium, high, very high).
The terms A1 A2, A3 are, respectively, associated to I,
H2 + Ar and H2/Ar. V and T denotes in-flight particle
velocity or surface temperature. B and C are the output
linguistic values from the fuzzy set.

3.1.3 Inference Engine. The basic function of the
inference engine is to compute the overall value of the
fuzzy output based on the individual contributions of each
rule in the rule base. Each individual contribution repre-
sents the value of the fuzzy output that is computed by a
single rule. The inference method determines directly the
outputs from the knowledge base and online data. More-
over, several rules can be activated simultaneously and
recommend actions with various degrees of validities.
These actions can be contradictory; in this case, it is
advisable to aggregate the rules. The Max-Min composi-
tion (Ref 14) operation was used in this study.

3.1.4 Defuzzification. Defuzzification is the procedure
that produces a real value from the result of the inference
that could be used as a fuzzy control input. The set of
modified control output values is converted into a single
point wise value. This step produces a quantifiable result
in FL. Characteristically, a fuzzy system will have a
number of rules that transform a number of variables into
a fuzzy result; thus the result is described in terms of
membership in fuzzy sets. The defuzzification method that
was used in this study is performed by combining the
results of the inference process and by computing the
fuzzy centroid of the area (Ref 15). The coordinate of
the centroid corresponds to the defuzzified value and is
expressed as follows:

fuzzy output ¼

R
U

y � l yð Þ � dy

R
U

l yð Þ � dy
ðEq 5Þ

where U represents all output values which are considered
and y represents the output variable level and l(y) the MF
degree associate to y.

Based on Mamdani�s implication for fuzzy inference
reasoning, fuzzy rules (R1, R2, etc.) were established. An
example of the rule-based array is illustrated in Fig. 3. The
three inputs (I, H2 + Ar, H2/Ar) would be transformed
into linguistic values; then the logic rules can be applied so
that the linguistic and membership values for the outputs
can be obtained.

3.2 Model Based on Artificial Neural Networks

The fundamental concept of neural networks concerns
the structure of the information processing system. The
neuron receives the weighted sum from the outputs of
the other neurons and operates a non-linear transfor-
mation with the aid of a transfer function (Ref 16). In
this study, the back-propagation algorithm was used
(Ref 17). This is an established ANN technique for
adjusting randomized weights during the data learning
phase according to the steepest gradient along the error
surface (Ref 18).

Experimental result sets have been organized in train-
ing and test samples of equal data set numbers. The
training category was used to tune neural network weights
and the test category to test the network configuration. To
ensure that each input variable provides an equal contri-
bution to the ANN, the input and output data were nor-
malized previously to a common interval of [0,1] as follows
(Ref 19):

xnormalised ¼
x�min xð Þ

max xð Þ �min xð Þ ðEq 6Þ

where xnormalized represented the formatted expression,
and x the real value.

3.2.1 Training and Test Procedures. The training
algorithms adopted in this study optimize the weights by
minimizing the sum of squared differences between the
desired (target values) and actual values (network value)
of the output neurons (Eq. 1). While the training begins,
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random weights (E) are assigned to all the connections as
follows:

E ¼ 1

2

XN

i¼1

y kð Þ � ynet kð Þð Þ2 ðEq 7Þ

where ynet(k) is the network value and y(k) the target
value.

The training algorithm continues backward through the
hidden layers in the opposite direction, adjusting the val-
ues of the weights using a gradient descent method to
reduce the error (Ref 20).

The weights are, hence, adjusted to reduce these pre-
diction errors through a back propagation algorithm
where the error is back distributed to the previous layers
across the network. The optimization of the connection
weights (wjk) is performed according to:

wjk ¼ w0
jk þ dwi ðEq 8Þ

where w0
jk is the initial connection weight, dwi ¼ �l @E

@wi

the weight correction and l the learning rate.
After the training step, the model is tested using the

test data to verify whether the network acquired source
dynamics. If the network output for each test pattern is
close to the respective target, the network is considered to
have acquired the underlying dynamics from the training
patterns (Ref 21).

3.2.2 Neural Networks Optimization. For the model-
ing process, user-defined parameters including the iteration
number, the learning rate, momentum rate and the number
of neurons in the hidden layer have to be determined and
optimized. The optimization steps are detailed as:

� Formatting each variable of the database between 0
and 1.

� Dividing the database into two categories; (i) a
training category required to tune weight population
and (ii) a test category to test the validity of predicted
results.

� Initializing the weight structure.

� Submitting a number of input/output examples to the
structure from the database for training.

� Weighting values correction with the back-propagation
method.

� Model testing (i.e., verification of its capacity to gen-
eralize the results): this step was performed at the end
of the training procedure without modifying weight
values.

The optimization of the ANN architecture was carried
out using the optimal brain surgeon algorithm. The
pruning procedure reduced the number of connections in
all cases without performance degradation; but no signif-
icant improvement in the results was obtained. Also, this
procedure reduces the calculation time. The performance
of the ANN was evaluated with the Root Mean Square
Error (RMSE) and the Mean Absolute Percentage Error
(MAPE), as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Xk¼T

k¼1

ynetðkÞ � yðkÞð Þ2
vuut ðEq 9Þ

MAPE ¼ 1

T

Xk¼T

k¼1

ynetðkÞ � yðkÞ
�� ��

yðkÞ

" #
� 100% ðEq 10Þ

where T is the highest value in the considered (training or
test) dataset.

Fig. 3 Example of fuzzy logic reasoning
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Root Mean Square Error and MAPE are the most
widely used parameters to quantify ANN performance.
They represent the fit between the neural network pre-
dictions and the actual targets. If the network outputs for
each test pattern are relatively close to the respective
targets, RMSE and MAPE exhibit small values and the
network is considered to have acquired the underlying
dynamics from the training patterns.

4. Results and Discussions

For defined processing parameters, the in-flight particle
characteristics, and consequently the deposition proper-
ties, are mostly conditioned by the feedstock rate and the
kinematic parameters (Ref 22). Discriminating the effect
of each power process parameter is important to control
the process. In order to validate the approach, the results
need (i) to be consistent with experimental data and (ii) a
large acceptance range is required.

4.1 Power Process Parameters Effect
on the In-flight Particles Characteristics

The three considered ANN inputs to predict the
in-flight particle average characteristics were the arc
current intensity, the hydrogen mass percentage and the
plasma forming gas total mass flow rate representing one
neuron each. The two outputs were the in-flight particle
average velocity and temperature, representing one neu-
ron each as well. The optimal ANN structure, resulting
from the optimization process, is composed of ten neu-
rons in the hidden layer. The maximum values of MAPE
and RSME were fixed, respectively, at 10% and 0.1. An
optimized structure based on the experimental data was
obtained after 10000 iterations of training and testing
processes. The evolution of the convergence criterion is
displayed in Fig. 4. The FL model rules are specifically
defined for each case to optimize the response of the
system. Each power process parameter was divided by
level (Table 3) and each level was associated to the
output MF. These considerations allow different combi-
nations to be developed to determine the rule base. Many

data can be introduced into the ANN model and, thus,
the predicted result is represented in the form of a curve
tendency, whereas in FL model, data are introduced just
by single value and after defuzzification, the model gives
the corresponding output.

The arc current intensity effect was studied between
350 and 650 A, the total plasma gas mass flow rate and the
hydrogen mass percentage being fixed to 72.3 g.min-1

(50 Nl min-1 in volume flow rate) and 1.25% (25% in
volume percentage), respectively. The results show that
the in-flight particle average velocity and surface tem-
perature increase, respectively, by 22% and 8% with the
increase in the current intensity from 350 to 650 A, Fig. 5.
The predicted results (ANN and FL) describe the same
evolution as the experimental data. Concerning the ANN
results, the prediction shows an increase of 22% and 7%
for the in-flight particle average velocity and temperature,
respectively, whereas this increase is about 22% and 9%,
respectively, for the FL results, Table 4.

The evolution of in-flight particle characteristics were
also studied while varying the hydrogen mass percentage
between 0.25 and 1.50% (5–30% in volume ratio) and by
fixing the total plasma gas mass flow rate to 72.3 g min-1

and the current intensity to 530 A. Figure 6 shows an
increase in the in-flight particle average velocity and
temperature. The predicted results indicate the same
tendency. When the hydrogen mass percentage varied
from 0.25 to 1.50%, the in-flight particle average velocity
and temperature increase by 12% and 6%, respectively,
Table 4. Hydrogen is a parameter that improves the
thermodynamic properties of the jet; in particular by
increasing the thermal conductivity and the enthalpy or by
reducing the plasma jet viscosity (Ref 23).

Figure 7 shows the in-flight particle average charac-
teristic evolution according to the total plasma gas mass
flow rate that varied from 50 to 100 g min-1 (35–70 Nl
min-1 in volume flow rate) while the hydrogen mass
percentage was fixed to 1.25% (25% in volume percent-
age) and the current intensity to 530 A. The total plasma
gas flow induced a significant increase in the particle
velocity and a low variation in the particle temperature.
Several studies confirm this tendency; see for example
(Ref 24). The plasma energy and momentum transfer to
the particles depend on their interaction duration and the
gas nature. High thermal transfer is in particular required
to obtain the highest possible number of particles com-
pletely melted on impact with the substrate. The energy
contained in the plasma gas is released differently with the
heat increase, according to whether diatomic or mono-
atomic plasma forming gases are considered. The addition
of hydrogen as a secondary plasma forming gas to the
primary argon plasma forming gas leads to an increase of
the mixture enthalpy due to two mechanisms (Ref 25, 26):

1. Hydrogen molecular dissociation (around 3500 K)
requires energy while pure argon begins to ionize only at
8000 K. Argon ionization becomes significant between
10000 and 15000 K; a temperature that is almost
achieved (Ar and H exhibit ionization energies very close
the one from the other: 15.8 and 13.6 eV, respectively);
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Fig. 4 Convergence criteria
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2. The plasma gas mixture specific mass is reduced by
adding hydrogen (argon molecular weight is 40 g
whereas hydrogen molecular weight is only 2 g, or in
other words 1 kg of Ar represents 25 moles whereas
1 kg of H2 represents 500 moles). Moreover, adding
hydrogen leads to a drastic increase in the plasma
mean integrated thermal conductivity. For example,
considering a plasma temperature of 10000 K con-
taining 20 vol.% of H2, the mean integrated thermal
conductivity is �1 W m-1 K-1; whereas it is below
0.2 W m-1 K-1 for pure argon plasma at the same
reference temperature (Ref 27). The arc current
intensity has a more pronounced effect on the in-flight
particle average characteristics compared to the
hydrogen percentage or the total plasma gas flow. The
total plasma gas flow enables control of the particle
mean velocity without changing significantly the
temperature.

4.2 Deposit Structural Attributes

The required deposit structural attributes that were
considered in this study are the total porosity level and the
average coating microhardness (measured with a Vickers
indenter). Tables 4, 5 summarized the effects of power
process parameters on deposit characteristics that were
determined experimentally. From the experimental data
and implementing ANN protocols, the power parameters
(arc current intensity, plasma forming gas mass total flow
rate, hydrogen percentage) were predicted as a function of
required deposit structural attributes (porosity level,
Vickers hardness values). ANN was constituted by one
input neuron corresponding to the considered deposit
structural attribute and the output by three neurons cor-
responding to the power parameters that were predicted.
After optimization, the ANN hidden layer was composed
of 12 neurons. In parallel, another ANN composed of ten

Table 4 Effect of power process parameters on in-flight particle average surface temperature and velocity

Arc current intensity (I)
when I increases

from 350 to 650 A

Plasma forming gas
mass flow rate (Ar + H2)
when Ar + H2 increases
from 50 to 100 g min21

Hydrogen mass percentage
(H2/Ar) when H2/Ar increases

from 0.25 to 1.50%

In-flight particle
average temperature T

Exp › 8.5% › 0.7% then fl 0.6% › 6%
ANN › 8.2% › 0.7% then fl 0.9% › 5.7%
FL › 9.9% › 0.5% then fi › 4.7%

In-flight particle
average velocity V

Exp › 22.9% › 38.7% › 12%
ANN › 22.9% › 35.7% › 10.4%
FL › 22.3% › 27.7% › 7.5%

fl: Decreases by. ›: Increases by. fi : Does not vary
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Fig. 5 Arc current intensity effect on in-flight particle average characteristics. Error bars represent standard deviation associated with
experimentally determined average values

372—Volume 17(3) September 2008 Journal of Thermal Spray Technology

P
e
e
r

R
e
v
ie

w
e
d



20
150

180

210

240

270

300

330

360

390

 Experimental values ANN predicted values
 FL predicted values

In
-f

lig
ht

 p
ar

tic
le

 a
ve

ra
ge

 v
el

oc
ity

 (
m

.s
-1

)

Plasma total gas mass flow
rate (g.min-1)

2370

2380

2390

2400

2410

2420

2430

2440

In
-f

lig
ht

 p
ar

tic
le

 a
ve

ra
ge

 te
m

pe
ra

tu
re

 (
°C

)

15

Plasma total gas volume flow
rate (Nl.min-1)

Plasma total gas volume flow
rate (Nl.min-1)

40 60 80 100 120 20
Plasma total gas mass flow

rate (g.min-1)

40 60 80 100 120

30 45 60 75 90 15 30 45 60 75 90

Fig. 7 Total plasma gas flow rate effect on in-flight particles characteristics. Error bars represent standard deviation associated with
experimentally determined average values

0.5
220

240

260

280

300

320

340

2300

2350

2400

2450

2500

2550

 Experimental values  ANN predicted values

 FL predicted values

In
-f

lig
ht

 p
ar

tic
le

 a
ve

ra
ge

 v
el

oc
ity

 (
m

.s
-1

)

Hydrogen mass ratio (%) 

10

Hydrogen volume ratio (%)

In
-f

lig
ht

 p
ar

tic
le

 a
ve

ra
ge

 te
m

pe
ra

tu
re

 (
°C

)

Hydrogen volume ratio (%)

1.0 1.5 2.0 2.5 0.5
Hydrogen mass ratio (%) 

1.0 1.5 2.0 2.5

20 30 40 50 10 20 30 40 50

Fig. 6 Hydrogen percentage effect on in-flight particles characteristics. Error bars represent standard deviation associated with
experimentally determined average values

Journal of Thermal Spray Technology Volume 17(3) September 2008—373

P
e
e
r

R
e
v
ie

w
e
d



neurons in its hidden layer (indeed, the first ANN struc-
ture that permitted prediction of particle average velocity
and average surface temperature) was used to deduce the
corresponding in-flight particle average characteristics for
these predicted process parameters.

4.2.1 Deposit Hardness. Figure 8 shows the power
parameters evolution vs. the deposit Vickers hardness
value. For each considered power parameter, the two
others were maintained at reference values (i.e., 530 A for
arc current intensity, 72.3 g min-1 for plasma forming gas
total mass flow rate and 1.25% for hydrogen mass
percentage).

Over the studied range; the higher the required deposit
hardness, the higher the power parameters. This corre-
sponds to an increase in the in-flight particle characteris-
tics, as illustrated in Fig. 9. A higher particle melting
degree and a higher particle momentum upon impact are
the required conditions to induce higher deposit cohesion,
considering microhardness as a descriptor of the coating
cohesion.

4.2.2 Deposit Porosity Level. An identical methodol-
ogy was applied to predict power parameters and in-flight
particle average characteristics vs. the required deposit
porosity level.

The arc current intensity increases the plasma enthalpy
and density of momentum quantity (Ref 2). Consequently
an increase in the deposit porosity level requires a decrease

in the arc current intensity, Fig. 10. Electric energy
increases the in-flight particle average characteristics; thus
the coating density (Ref 28). Figure 11 displays the cor-
responding in-flight particle characteristics. The hydrogen
percentage has an effect on the porosity by modifying
the plasma jet characteristics (Ref 23); i.e., the plasma
enthalpy, its mean integrated thermal conductivity and its
velocity increase while the plasma viscosity decreases.
Even for low hydrogen mass percentage (less then 1%),
hydrogen still improves the mean integrated thermal con-
ductivity and promotes, hence, thermal exchange with the
powder particles. For high hydrogen percentage, porosity
does not vary significantly due to the fact that the enthalpy
of the plasma jet reaches a critical value inducing signifi-
cant feedstock evaporation (Ref 29). Friis et al. (Ref 30)
have demonstrated the same evolution tendencies. In the
same way, increasing the total mass rate of the plasma
forming gas decreases molecular ionization and dissocia-
tion in the plasma jet (Ref 31). The particles are less heated
before impact against the substrate (Ref 32); thus, the
lamella flattening ratio decreases (Ref 33).

Table 5 Effect of power process parameters on deposit
microhardness and porosity level

Arc current
intensity (I)

when I increases
from 350 to 650 A

Plasma forming
gas mass flow rate

(Ar + H2) when Ar + H2

increases from
50 to 100 g min21

Hydrogen mass
percentage

(H2/Ar) when
H2/Ar increases

from 0.25 to 1.50%

VHN › 24.6% › 14.5% › 51.6%
P fl 26.8% › 110.0% fl 26.2%

fl: decrease by. ›: increase by. VHN: Vickers Hardness Number.
P: pore level
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required deposit Vickers hardness value
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The plasma flow rate increases the particle average
velocity and decreases their average temperature (Ref 2).
Increasing this flow rate above a critical value leads to a
decrease in the arc root diameter; reducing concomitantly
the plasma flow core. Thus, only few particles will succeed
in penetrating the reduced warm core region of the plasma
jet; thus the particle temperature variation becomes
insignificant for a porosity level higher than 6%.

Table 6 compares some criteria related to the ANN
and FL models. From a general point of view, the ANN
model appears more pertinent than the FL one with
regard to the prediction and simulation concept. The
ANN model is able to learn any behavior and its response
can be updated/upgraded during using. The FL model is
more suited for on-line control, since it delivers a response
within a short time (Ref 34). These models have, hence, to
be selected depending on the final purpose; i.e., process
prediction (ANN) or process control (FL). With regard to
thermal spray processing, AI is a good candidate for
on-line control since it has the ability to model complex
systems.

5. Conclusion

The power parameters are strongly correlated via
mostly non-linear relationships. The influences of spray
parameters on the in-flight particle average characteristics
and the deposit structural attributes of alumina-titania

coatings were investigated. Two models based on AI were
implemented to understand and establish inter-relation-
ships in the APS process. These models are a powerful
technique that deliver a response within a very short time,
once properly prepared.

The proposed model permits cost reduction via the
possibility of adjusting the process parameter for each
desired properties. The ANN model seems well adapted
for process prediction; whereas the FL model appears
more adapted for process control.
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